multiscale qmm polarizableCongratulation to our PhD student Michele Nottoli for his publication: "General formulation of polarizable embedding models and of their coupling". In this work, we propose a general formalism for polarizable embedding models that can be applied to either continuum or atomistic polarizable models. After deriving such a formalism for both variational and non-variational models, we address the problem of coupling two polarizable models among themselves and to a quantum mechanical (QM) description in the spirit of multiscale quantum chemistry.

We discuss general, model-independent coupling hypotheses and derive coupled polarization equations for all combinations of variational and non-variational models and discuss the embedding contributions to the analytical derivatives of the energy, with a particular focus on the elements of the Fock or Kohn–Sham matrix. We apply the general formalism to the derivation of the working equations for a three-layered, fully polarizable QM/MM/continuum strategy using the non-variational atomic multipole optimized energetics for biomolecular applications polarizable force field and the domain decomposition conductor-like screening model. doi: