mbe fci casscfCongratulations to our PhD student Ivan Giannì and our Postdoctoral researcher Tommaso Nottoli for their publication entitled "MBE-CASSCF Approach for the Accurate Treatment of Large Active Spaces" in the Journal of Chemical Theory and Computation. The work presents a novel implementation of the complete active space self-consistent field (CASSCF) method that makes use of the many-body expanded full configuration interaction (MBE-FCI) method to incrementally approximate electronic structures within large active spaces.

On the basis of a hybrid first-order algorithm employing both Super-CI and quasi-Newton strategies for the optimization of molecular orbitals, we demonstrate both computational efficacy and high accuracy of the resulting MBE-CASSCF method. We assess the performance of our implementation on a set of established numerical tests before applying MBE-CASSCF in the investigation of the triplet-quintet spin gap of iron(II) porphyrin with active spaces as large as 50 electrons in 50 orbitals.

The work is available at https://pubs.acs.org/doi/10.1021/acs.jctc.4c00388

Pin It

Dipartimento di Chimica e Chimica Industriale
Department of Chemistry and Industrial Chemistry
Via G. Moruzzi, 13 - Pisa, Italy
Corso di Dottorato in Scienze Chimiche e dei Materiali
Doctoral School in Chemistry and Material Science
Privacy Policy | AdminLogin

logo pulito cerchiato rid

This website uses cookies to ensure you get the best experience

Cookies sent by this website are not used for profiling visitors or obtaining users’ personal information