Arcidiacono Amanda

Cycle/Years
39th cycle [2023-2026]

Contacts
Questo indirizzo email è protetto dagli spambots. È necessario abilitare JavaScript per vederlo.

Supervisors
Prof. Benedetta Mennucci and Dr. Lorenzo Cupellini

Title of the PhD project
Machine Learning strategies for excited-state dynamics of biological systems

Abstract of the PhD project
The intricate response of biological systems to light involves complex factors operating across diverse spatial and temporal scales. Events at the excited state of small chromophores within photo-responsive proteins can induce profound structural changes, necessitating a multi-scale approach. This entails integrating the precision of quantum mechanical (QM) descriptions with rapid evaluations of molecular properties, especially within intricate environments.
In this project, our specific focus lies on a process known as non-photochemical quenching (NPQ), frequently occurring in photosynthetic systems, where numerous chromophores are involved in energy or charge transfer processes. Efficiently computing their properties, interactions, and incorporating environmental effects at a low computational cost is pivotal for this research.
In this project, we investigate Machine Learning (ML)-based strategies to achieve this goal, combining statistical learning methods with a detailed understanding of the systems at hand. This approach promises efficient models for predicting biological functions of interest, also paving the way for performing excited state dynamics simulations at a lower computational cost.

Academic Fields and Disciplines (SSD), main and secondary
CHIM02

Publications
A. Arcidiacono, E. Cignoni, P. Mazzeo, L, Cupellini, B. Mennucci, Predicting Solvatochromism of Chromophores in Proteins with QM/MM and Machine Learning, (2024), Journal of Physical Chemistry A, 128, 18, 3646-3658, DOI:10.1021/acs.jpca.4c00249
A. Arcidiacono, D. Accomasso, L. Cupellini, B. Mennucci, How orange carotenoid protein controls the excited state dynamics of canthaxanthin, (2023), Chemical Science, 14, 11158-11169, DOI:10.1039/D3SC02662K

Poster communications at conferences
A. Arcidiacono, E. Cignoni, P. Mazzeo, L, Cupellini, B. Mennucci, Predicting solvatochromism of carotenoids with Machine Learning, Chemistry for the Future 2024, Dipartimento di Chimica e Chimica Industriale, Università di Pisa (Italy), 3-6 June 2024.
A. Arcidiacono, D. Accomasso, L. Cupellini, B. Mennucci, The photochemical mchanism of the activation of Orange Carotenoid Protein, 1st ViRAPID Workshop 2024: Bringing together rare event sampling, excited state dynamics and machine learning, Univeristy of Vienna (Austria), 26-29 February 2024.
A. Arcidiacono, D. Accomasso, L. Cupellini, B. Mennucci, The photochemical mchanism of the activation of Orange Carotenoid Protein, VIII Congresso Nazionale della Divisione di Chimica Teorica e Computazionale della SCI, Scuola Normale Superiore, Pisa (Italy), 20-22 September 2023.
A. Arcidiacono, D. Accomasso, L. Cupellini, B. Mennucci, The photochemical mchanism of the activation of Orange Carotenoid Protein, Chemistry for the Future 2023, Dipartimento di Chimica e Chimica Industriale, Università di Pisa (Italy), 28-30 June 2023.

Funding
PRIN 2022 grant from Italian MUR.

DCCI|UNIPI
Dipartimento di Chimica e Chimica Industriale
Department of Chemistry and Industrial Chemistry
Via G. Moruzzi, 13 - Pisa, Italy
DSCM
Corso di Dottorato in Scienze Chimiche e dei Materiali
Doctoral School in Chemistry and Material Science
Privacy Policy | AdminLogin


logo pulito cerchiato rid

This website uses cookies to ensure you get the best experience

Cookies sent by this website are not used for profiling visitors or obtaining users’ personal information